|
ПРОТОКОЛ TCP
TCP (Transmission Control Protocol, Протокол управления передачей) был спроектирован в качестве связующего протокола для обеспечения интерактивной работы между компьютерами. TCP обеспечивает надежность и достоверность обмена данными между процессами на компьютерах, входящих в общую сеть. TCP, с одной стороны, взаимодействует с прикладным протоколом пользовательского приложения, а с другой, с протоколом, обеспечивающим "низкоуровневые" функции: маршрутизацию и адресацию пакетов, которые, как правило, выполняет IP.
В операционной системе реализация TCP представляет собой отдельный системный модуль (драйвер), через который, как правило, проходят все вызовы функций протокола. Интерфейс между прикладным процессом и TCP представляет собой библиотеку вызовов, такую же как библиотека системных вызовов, например, для работы с файлами. Вы можете открыть или закрыть соединение (как открыть или закрыть файл) и отправить или принять данные из установленного соединения (аналогично операциям чтения и записи файла). Вызовы TCP могут работать с прикладным приложением в асинхронном режиме. Безусловно, реализация TCP в каждой системе может осуществлять множество собственных функций, но любая из этих реализации должна обеспечивать минимум функциональности, которая требуется стандартами TCP.
Схема работы пользовательского приложения с TCP, в общих чертах, состоит в следующем. Для передачи данных пользовательскому процессу надо вызвать соответствующую функцию TCP, с указанием на буфер передаваемых данных. TCP упаковывает эти данные в сегменты своего стека и вызывает функцию передачи протокола нижнего уровня, например IP.
На другом конце, получатель TCP группирует поступившие от протокола нижнего уровня данные в принимающие сегменты своего буфера, проверяет целостность данных, передает данные пользовательскому процессу и уведомляет отправителя об их получении.
Пользовательский интерфейс с TCP может выполнять такие команды как открыть (OPEN) или закрыть (CLOSE) соединение, отправить (SEND) или принять (RECEIVE) данные, или получить статус соединения (STATUS). Эти вызовы подобны любым другим вызовам функций операционной системы из пользовательской программы, таким как открытие, чтение или закрытие файла.
В модели межсетевого соединения взаимодействие TCP и протоколов нижнего уровня, как правило, не специфицировано, за исключением того, что должен существовать механизм, который обеспечивал бы асинхронную передачу информации от одного уровня к другому. Результатом работы этого механизма является инкапсуляция протокола более высокого уровня в тело протокола более низкого уровня. Реализуется этот механизм через интерфейс вызовов между TCP и IP.
В результате работы этого механизма каждый TCP-пакет вкладывается в "конверт" протокола нижнего уровня, например, IP. Получившаяся таким образом дейтаграмма содержит в себе TCP-пакет так же как TCP-пакет содержит пользовательские данные.
Простейшая модель работы TCP-протокола выглядит обманчиво гладко, поскольку на самом деле реальная работа изобилует множеством деталей и тонкостей.
Логическая структура сетевого программного обеспечения, реализующего протоколы семейства TCP/IP в каждом узле сети Internet, изображена на рис. 2.12.
Прямоугольники обозначают обработку данных, а линии, соединяющие прямоугольники, - пути передачи данных. Горизонтальная линия внизу рисунка обозначает кабель сети Ethernet, которая используется в качестве примера физической среды. Понимание этой логической структуры является основой для понимания всей технологии TCP/IP.
Рис. 2.12.Структура сетевого программного обеспечения семейства протоколов TCP/IP
Далее более подробно рассмотрим возможности, принципы построения и основные функции протокола TCP:
Потоки данных, стек протоколов, механизм гнезд и мультиплексирование соединений
Процедура установления соединения и передача данных
Механизмы обеспечения достоверности передаваемых данных
Механизм контроля потока данных
Флаг важности пакета, средства обеспечения безопасности протокола
Потоки данных, стек протоколов, механизм гнезд и мультиплексирование соединений
Для установления соединения между двумя процессами на различных компьютерах сети необходимо знать не только Internet-адреса компьютеров, но и номер ТСР-порта, который процесс использует на данном компьютере. В совокупности с Internet-адресом компьютера порты образуют систему гнезд (sockets). Пара гнезд уникально идентифицирует каждое соединение или поток данных в сети Internet, а порт обеспечивает независимость каждого ТСР-канала на данном компьютере. Безусловно, несколько процессов на машине могут использовать один и тот же ТСР-порт, но с точки зрения удаленного процесса между этими процессами не будет никакой разницы.
Рассмотрим потоки данных, проходящие через протоколы. При использовании протокола TCP данные передаются между прикладным процессом и модулем TCP. Типичным прикладным процессом, использующим протокол TCP, является модуль FTP (File Transfer Protocol, Протокол передачи фай-лов). Стек протоколов в этом случае будет FTP/TCP/IP/ENET. При использовании протокола UDP (User Datagram Protocol, Протокол дейтаграмм пользователя) данные передаются между прикладным процессом и модулем UDP. Например, SNMP (Simple Network Management Protocol, Простой протокол управления сетью) пользуется транспортными услугами UDP. Его стек протоколов выглядит так: SNMP/UDP/IP/ENET.
Одно гнездо на компьютере может быть задействовано в соединениях с несколькими гнездами на удаленных компьютерах. Кроме того, одно и то же гнездо может передавать поток данных в обоих направлениях. Таким образом, механизм гнезд позволяет на одном компьютере одновременно работать нескольким приложениям и уникально идентифицирует каждый поток данных сети. Это называется мультиплексированием соединений.
Модули TCP, UDP и драйвер Ethernet являются мультиплексорами типа n x 1. Действуя как мультиплексоры, они переключают несколько входов на один выход. Они также являются демультиплексорами типа 1 х n. Как демультиплексоры, они переключают один вход на один из многих выходов в соответствии с полем типа в заголовке протокольного блока данных. Когда Ethernet-кадр попадает в драйвер сетевого интерфейса Ethernet, он может быть направлен либо в модуль ARP, либо в модуль IP. (Значение поля типа в заголовке кадра указывает, куда должен быть направлен Ethernet-кадр).
Если IP-пакет попадает в модуль IP, то содержащиеся в нем данные могут быть переданы либо модулю TCP, либо UDP, что определяется полем "Protocol" в заголовке IP-пакета. Если TCP-сообщение попадает в модуль TCP, то выбор прикладной программы, которой должно быть передано сообщение, осуществляется на основе значения поля "порт" в заголовке TCP-сообщения.
Мультиплексирование данных в обратную сторону осуществляется довольно просто, так как из каждого модуля существует только один путь вниз. Каждый протокольный модуль добавляет к пакету свой заголовок, на основании которого машина, принявшая пакет, выполняет демультиплексирование.
Назначение портов приложениям на каждом компьютере происходит независимо друг от друга. TCP может самостоятельно выбирать порт, с которым будет работать приложение, или приложение укажет, с каким портом на данном компьютере оно будет работать. Однако, как правило, часто используемые приложения - сервисы используют одни и те же номера портов, которые уже стали общеизвестными, например, такие как HTTP, FTP, SMTP и др., для того, чтобы к данному процессу на компьютере можно было присоединиться, указывая только адрес машины. Например, Internet браузер, если ему не указать дополнительно, ищет по указанному адресу приложение, работающее с портом 80, - это наиболее распространенный порт для серверов WWW.
Кроме того, машина может быть снабжена несколькими сетевыми интерфейсами, тогда она должна осуществлять мультиплексирование типа п х т, т. е. между несколькими прикладными программами и сетевыми интерфейсами.
Далее
|
|